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Summary 

AURELIA is an advanced program for the computer-aided evaluation of two-, three- and four-dimen- 
sional NMR spectra of any type of molecule. It can be used for the analysis of spectra of small mol- 
ecules as well as for evaluation of complicated spectra of biological macromolecules such as proteins. 
AURELIA is highly interactive and offers a large number of tools, such as artefact reduction, cluster 
and multiplet analysis, spin system searches, resonance assignments, automated calculation of volumes 
in multidimensional spectra, calculation of distances with different approaches, including the full 
relaxation matrix approach, Bayesian analysis of peak features, correlation of molecular structures with 
NMR data, comparison of spectra via spectral algebra and pattern match techniques, automated 
sequential assignments on the basis of triple resonance spectra, and automatic strip calculation. In 
contrast to most other programs, many tasks are performed automatically. 

Introduction 

The extensive use of advanced computer programs for 
the analysis of NMR spectra becomes more and more im- 
portant, since data evaluation, not data recording, often 
represents the time-consuming bottleneck before a scien- 
tific problem can be solved by NMR methods. This is es- 
pecially apparent when multidimensional NMR spectro- 
scopy is applied to biological macromolecules. Correspon- 
dingly, a number of groups have developed and published 
various more-or-less elaborate software packages (for a 
review, see Kalbitzer, 1994). However, many of these 
programs deal only with special aspects of data evalu- 
ation. The present paper describes the fundamental fea- 
tures of the general-purpose program package AURELIA, 
which provides all tools necessary for the evaluation of 
multidimensional frequency-domain data, and its applica- 
tion to a medium-sized protein, the phosphocarrier protein 
HPr, as well as a small neuropeptide, the head activator. 

The analysis of multidimensional NMR data can be 
viewed within the scope of a general image analysis, 

which usually comprises four different stages of oper- 
ation: (1) improvement of the image quality with en- 
hancement of important features; (2) detection and separ- 
ation of relevant objects from the background; (3) classifi- 
cation of objects; and (4) interpretation of objects and 
classes of objects as part of a local or global analysis. 
This final step also includes the quantification of objects. 

For the improvement of the spectral quality, a number 
of frequency-domain methods have been proposed. Prob- 
ably the most important are methods for removing base 
plane distortions (Barsukov and Arseniev, 1987; Zolnai et 
al., 1989; Dietrich et al., 1991; Giintert and Wiithrich, 
1992; Saffrich et al., 1993; Hare and Prestegard, 1994; 
Rouh et al., 1994). For spectra recorded with older in- 
struments, procedures for the suppression of t~ ridges, t 1 
oscillations and antidiagonals are useful (Klevit, 1985; 
Glaser and Kalbitzer, 1986; Zolnai et al., 1986,1988; 
Mitschang et al., 1990; Kalbitzer et al., 1991b; Manoleras 
and Norton, 1992). Symmetry enhancement methods can 
be used in spectra with inherent symmetries, in order to 
intensify these features relative to noise and artefact 
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signals which do not show symmetry (Baumann et al., 
1981a,b; Bolton, 1985,1986a,b; Neidig and Kalbitzer, 
1988,1991; Kalbitzer et al., 1991b). 

The detection and separation of the relevant objects in 
the spectra, the multidimensional NMR peaks, is usually 
done by peak picking, which may be combined with 
methods exploiting peak shape information for a discrimi- 
nation against noise and artefact peaks (Neidig et al., 
1984,1990; Glaser and Kalbitzer, 1987; Cieslar et al., 
1988; Novic and Bodenhausen, 1988; Pfdndler and 
Bodenhausen, 1988a; Stoven et al., 1989; Kleywegt et al., 
1990; Eccles et al., 1991; Garrett et al., 1991; Chylla and 
Markley, 1993; Rouh et al., 1994; Antz et al., 1995). 

If signals are recognized as true resonance peaks, they 
are treated as valid objects described by a set of parame- 
ters such as chemical shifts, line shapes, multiplet struc- 
tures, volumes, and statistical quality factors (classifica- 
tion and local interpretation). For the recognition of 
multiplets, a number of procedures have been proposed 
in the past. The multiplet structures searched for must be 
defined by the user or may be extracted by the program 
itself from training sets (Glaser and Kalbitzer, 1987; 
Hoch et al., 1987; Meier et al., 1987; Meier and Ernst, 
1988; Novic et al., 1988; Novic and Bodenhausen, 1988; 
Neidig et al., 1990; Shen et al., 1990; Eccles et al., 1991; 
Kjaer and Poulsen, 1991; Shen and Poulsen, 1992). Inte- 
gration of the cross peaks is essential for the calculation 
of interatomic distances and is sometimes used for the 
calculation of dihedral angles. Because of the importance 
of these parameters, various methods for volume determi- 
nation have been published ranging from simple interac- 
tive to fully automated approaches (Denk et al., 1986; 
Holak et al., 1987; Olejniczak et al., 1989; Eccles et al., 
1991; Gfintert et al., 1993; Brown and Huestis, 1994; 
Geyer et al., 1995). 

The global interpretation of the data ideally leads to a 
complete assignment of all resonances and the extraction 
of all relevant parameters that are necessary for the struc- 
tural calculation. In the homonuclear case, these assign- 
ment procedures can be classified into two extremes. The 
first is the standard strategy first introduced by Wagner 
and Wfithrich (1982), where first as many general spin 
system patterns of elementary building blocks of the 
molecule as possible are assigned before the sequential 
NOEs are used for the sequence-specific assignments. The 
alternative is the main-chain-directed (MCD) strategy, 
which tries to assign the resonances of the backbone 
before assigning the spin patterns of the side chains 
(Englander and Wand, 1987; Wand and Nelson, 1991). In 
practice, hybrid techniques, which combine the advan- 
tages of the two methods, are often used (Cieslar et al., 
1988; Eggenberger et al., 1988; Grahn et al., 1988; 
Eggenberger and Bodenhausen, 1989; Kleywegt et al., 
1989,1991; Weber and Mueller, 1989; Van de Ven, 1990; 
Van de Ven et al., 1990; Eccles et al., 1991). With the 

advent of multidimensional NMR in conjunction with 
isotope labeling, the number of possible NMR experi- 
ments and hence possible assignment strategies is explod- 
ing (Cieslar et al., 1990; Vuister et al., 1990; Oschkinat et 
al., 1991; Bernstein et al., 1993; Kraulis, 1994; Meadows 
et al., 1994; Oschkinat and Croft, 1994; Zimmerman et 
al., 1994). Since the development is not yet finished, a 
generally applicable computer program such as AURELIA 
cannot incorporate all possible strategies, but has to be 
flexible enough to be adapted to new developments. 

Although a large number of publications exist where 
specific algorithms for data evaluation are presented, only 
a few programs have been described in the literature that 
are designed for a general and automated evaluation of 
multidimensional data sets (Kraulis, 1989; Kleywegt et 
al., 1990,1993; Zolnai et al., 1990; Eccles et al., 1991; 
Kjaer et al., 1991,1994; Markley et al., 1991; Darba, 
1992). In this paper we will describe the program 
AURELIA, its general architecture and organization, as 
well as specific aspects of its application. 

Materials and Methods 

Biological samples and N M R  spectroscopy 
HPr proteins from E. faecalis and S. aureus were pu- 

rified as described earlier (Kalbitzer et al., 1982). Recom- 
binant HPr from S. carnosus was obtained according to 
Kruse et al. (1993). Assignments for HPr from S. aureus 
were taken from Kalbitzer et al. (1991a), and the three- 
dimensional structure was calculated as published earlier 
(Kalbitzer and Hengstenberg, 1993). The neuropeptide 
head activator was synthesized by an Fmoc solid-phase 
procedure; the resonance assignments were taken from 
Saffrich et al. (1989). 

Software 
AURELIA (AUtomated REsonance Line Assignment) 

is written in C; the graphics is based on X-Windows 
(Xll ,  R5). According to personal preferences, the user 
may run it with a pure X11 or with an X11/Motif user 
interface. The program runs on all types of SGI com- 
puters and Bruker ASPECT stations. A PC version, run- 
ning under Windows NT, is available as well. The pro- 
gram is distributed by Bruker and is available on the ftp 
servers ftp.bruker.de and ftp.bruker.com. 

Results and Discussion 

General organization of  the program 

Following the ideas of a general image analysis, 
AURELIA is organized in different modules (Table 1). 
Module 0 is used for the general definition of input data, 
module 1 for display, plotting and artefact reduction, 
modules 2 and 3 for the local and global analysis, respect- 
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Module no. General description Functions 

0 Managing of input data 

1 Enhancement of spectral quality 

Local analysis of 2D spectra 

Nonlocal analysis of 2D spectra 

Display and analysis of 3D spectra 

Display and analysis of 4D spectra 

Adding to or deleting files in AURELIA's directory 
Listing and editing of spectral parameters 

Mean ridge subtraction 
Mean row subtraction 
Antidiagonal suppression 
Removal of oscillatory artefacts 
Base-plane correction methods 
Symmetry enhancement methods 
Display and plotting 

Automated peak picking 
Automated multiplet recognition 
Interactive correction of peak and multiplet lists 
Volume calculation 
Classification of peaks by a Bayesian analysis 
Distance calculation from NOESY or ROESY data 
Simultaneous display of the 3D structure and the corresponding spectrum 
Simulation of NOESY spectra by relaxation matrix calculation 
Display and plotting 

Automated recognition of J-coupling networks 
Automated sequential assignment 
Transfer of peak and assignment lists 
Comparison of peak lists 
Spectral algebra 
Combining information from 2D and 3D spectra 
Display and plotting 

Inspection of 3D data 
Mean base plane subtraction 
Base-plane correction methods 
Automated peak picking 
Automated integration of 3D peaks 
Automated sequential assignment in a set of 2D and 3D spectra 
Display and plotting 

Inspection of 4D data sets 
Automated peak picking 
Automated integration of 4D peaks 
Display and plotting 

ively, of  two-dimensional N M R  spectra, and modules 4 
and 5 for the display and analysis of  three- and four- 
dimensional N M R  spectra, respectively. Some additional 
modules, like the module for the analysis of  1D and 2D 
N M R  spectra of  mixtures of  low-molecular-weight com- 
pounds, are outside the scope of  this paper and will not  
be described here. 

Module O: Managing the input data 
In this part  o f  the program, the user selects the n-di- 

mensional spectra that are to be used. These spectra 
should be stored in binary integer format and should be 
organized in n-dimensional submatrices with flexible 
dimensions to allow for the fastest mean access to any 
portion of  the data in any dimension. Parameters describ- 
ing the spectra are stored in separate files. N M R  spectra 

that have been Fourier transformed by any of  the numer- 
ous existing software packages and do not follow the 
rules mentioned above may also be used. Proper conver- 
sions are offered for various formats. Different byte 
orders are handled automatically. Since a resonance as- 
signment procedure most likely involves a group of  spec- 
tra rather than just one, special care has been taken to 
access such a group in the most convenient way. This is 
achieved by running the program together with a process 
or history file, which holds a full description o f  all in- 
volved spectra. Transferring and comparing information 
of  the different spectra can thus be handled automatically 
by the program. This history file also allows the user to 
interrupt the data evaluation at any point and resume it 
later. Spectra may be added or removed from the history 
file at any stage of  the analysis. 
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Module 1: Display and enhancement of spectral quality 
The quality of the input data significantly influences 

any automated data analysis, Therefore, a careful process- 
ing is very important. AURELIA provides various tools 
to overcome the typical problems encountered, such as 
base plane artefacts, t t ridges or antidiagonals (Table 1). 

A flat base plane is not only important for the correct 
integration of multidimensional NMR spectra, where base 
plane variations can dominate the integral, but also for 
peak recognition, where a threshold is typically defined to 
sort out resonance peaks from noise spikes. The funda- 
mental assumption used in base plane-correcting pro- 
cedures is that the base plane is ideally fiat and that slope 
variations of resonance peaks are greater than those of 
base plane artefacts. Published base plane correction 
methods differ in the functions used for approximating 
base line artefacts and in the way that regions are defined 
where the ideal base line should be zero. Those regions 
which contain no cross peaks can either be defined by the 
user (Barsukov and Arseniev, 1987; Zolnai et al., 1989; 
Saffrich et al., 1993) or identified automatically by the 
program (Dietrich et al,, 1991; Gfintert and Wtithrich, 
1992; Chylla and Markley, 1993). The latter methods are 
more convenient for the user; however, in interactively 
driven methods external information can be incorporated, 
e.g. evidence derived from other experiments, such as 
well-resolved ID spectra. AURELIA provides two ap- 
proximations of the base line, the cubic spline fit (Zolnai 
et al., 1989) and the sectionally linear interpolation 
(Saffrich et al., 1993). The cubic spline interpolation has 
the principal advantage that it approximates the base line 
by a smooth function; the linear interpolation, where the 
base plane is approximated by short sections of straight 
lines, has the advantage of being computationally very 
fast. In addition, it avoids overcorrections which often 
result from cubic interpolation. Both methods can be 
applied to two- and three-dimensional NMR spectra. 
Base line points where no signals are expected are read 
from a file. They can be interactively defined by inspect- 
ing suitable 1D spectra or projections of the 2D (and 3D) 
spectra. In the case of symmetric homonuclear spectra, 
one set of points can be used for a base plane correction 
in all dimensions. Other types of spectra require the defi- 
nition of different sets of base line points for the individ- 
ual dimensions. 

Typical artefacts that often dominate spectra recorded 
with older instruments are tl ridges. A simple method for 
their attenuation, the mean row subtraction, was devised 
by Klevit (1985). In this method, the user defines one or 
several regions in the 2D spectrum where no cross peaks 
but tl ridges are present. The mean of these rows is calcu- 
lated and then subtracted from all other rows. Initially, 
this method was devised for absolute-value spectra and it 
leads only to small spectral improvements in phase-sensi- 
tive NMR spectra where positive and negative intensities 

partly cancel. AURELIA provides two additional vari- 
ations of the original method, well suited to phase-sensi- 
tive spectra (Zolnai et al., 1986,1988; Kalbitzer et al., 
199ib). Positive and negative data points are treated indi- 
vidually during the calculation, and subtraction of the 
correction profile and different types of profiles, mean 
and projection, may be chosen. 

The oscillatory components of ridges, which originate 
from truncation effects, can be effectively removed by a 
frequency-domain filter developed to suppress periodic 
features (Mitschang et al., 1990). The only information 
needed for this process is the degree of zero-filling, which 
determines the basic frequency of the oscillatory artefacts. 

Attenuation of the diagonal peaks leads to better reso- 
lution of the cross peaks in their immediate vicinity. In 
phase-sensitive COSY spectra, diagonal peaks can be 
suppressed in the mixed time-/frequency-domain spectrum 
S(tl,0~2) after transforming signals in the tl direction into 
pure exponentials (shifting their frequencies to 0) and 
applying a filter that selectively suppresses nonoscillating 
signals (Friedrichs et al., 1991; Pelczer, 1991). AURELIA 
provides an alternative method that is useful for absolute- 
value spectra. An appropriately weighted mean diagonal 
peak is constructed by projecting the whole spectrum 
parallel to the diagonal. The resulting profile is then 
subtracted columnwise from the spectrum (Glaser and 
Kalbitzer, 1986). This procedure has the advantage of 
also significantly reducing t, ridges that show strong 
intensity modulations parallel to the diagonal, as often 
found in ROESY spectra. 

Antidiagonals in 2D NMR spectra, which originate 
from incorrect pulse phases (Simorre and Marion, 1990), 
are often found in spectra recorded with instruments 
using analogous phase shifters. Since their general struc- 
ture is known, they can be simply subtracted from abso- 
lute-value spectra (Glaser and Kalbitzer, 1986). The al- 
gorithm implemented in AURELIA automatically deter- 
mines the weighting factors necessary for this calculation 
from the ratio of the diagonal-to-antidiagonal intensities. 

Inherent symmetries in multidimensional spectra pro- 
vide redundant information that is useful for discriminat- 
ing resonance signals from noise and artefacts. A more 
powerful method of enhancing pertinent information is 
the exploitation of global symmetries, such as cross-peak 
symmetries about the main diagonal present in many 
homonuclear spectra. The first symmetry enhancement 
procedures consisted of replacing the intensities I(i,j) and 
I(j,i) in symmetry-related positions by the minimum 
min(I(i,j), I(j,i)) (Baumann et al., 198Ib). This method is 
computationally very fast and suppresses asymmetries in 
the spectrum very efficiently. However, it often suppresses 
useful information as well and must be applied with great 
care. A generalization of the method is implemented in 
AURELIA. This much more advanced symmetrization 
technique also takes into account information about the 
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Fig. 1. Simultaneous display and handling of two NMR spectra. A NOESY and a TOCSY spectrum of HPr from S. carnosus  are displayed. 
Annotations from the TOCSY spectrum were automatically transferred to the NOESY spectrum. Every peak in the spectrum is characterized by 
its hypothesis number, its name, its peak_id (which defines the multiplet pattern), and its frequency coordinates. The cursor designates the peak 
under consideration. 

environment of each data point. Instead of only compar- 
ing pairwise points I(i,j) and I(j,i), symmetry-related two- 
dimensional regions containing such points are arranged 
as one-dimensional vectors. The cosine of the angle be- 
tween each pair of vectors represents a normalized match 
factor, which describes the correlation of the correspon- 
ding relative intensity distributions. This match factor can 
be used in various ways (e.g., proportional, difference 
proportional, additive) (Neidig and Kalbitzer, 1988,1990; 
Kalbitzer et al., 1991b) to correct the intensities at posi- 
tions (i,j) and (j,i). This method is computationally inten- 
sive, but much less error prone than the simple sym- 
metrization methods. By a proper selection of the correc- 
tion technique, it may be carefully adapted to obtain the 
information desired. If symmetrization techniques are to 
be applied, the data processing should be chosen such 
that inherent symmetries are conserved (e.g., by using 
different window functions in each dimension). 

Finally, resolution enhancement and reduction of un- 
wanted components of the data can be achieved by a 
technique known from general image analysis, segmenta- 
tion and local rescaling. According to the selected para- 
meters, an automated peak picking is combined with an 
iterative region growing based on analyzing local intensity 
distributions. The method determines data points belong- 
ing to local peaks and zeros all others. Broad humps, 
noise spikes and the bottom parts of the peaks may be 
removed from the spectra. The intensities of the remain- 
ing data points may be mapped into a well-defined small 
range of values (Neidig and Kalbitzer, 1990). Segmenta- 
tion provides a much better visual access to spectra that 
contain many overlapping regions and show large inten- 
sity variations. It also represents a powerful method for 
data compression, since only the peak areas having inten- 
sities different from zero have to be stored. 

To achieve the optimum quality of a spectrum, any of 
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the methods provided in AURELIA may be combined 
and applied sequentially. However, since these methods 
are based on the detection and evaluation of patterns, 
which are then changed during a corrective process, the 
order of the operations is significant. Based on the under- 
lying theories, in our experience the following order yields 
the best results: (1) removal of oscillatory components; (2) 
removal of tl ridges; (3) reduction of antidiagonals; (4) 
removal of the diagonal and oscillations parallel to the 
diagonal; (5) base line correction; (6) symmetrization; and 
(7) segmentation. Depending on the actual spectrum, 
typically two or three methods are applied. 

The display of the NMR data, for example as contour 
diagrams, allows the user to access the spectra properly 
and to cross-check the original data with information 
derived from it. As any NMR program should do (see, 
e.g., Johnson and Blevins, 1994), AURELIA offers all 
standard display techniques, such as contour smoothing 
by Bezier interpolation (Kalbitzer et al., 1991b), zooming 
techniques, overlay techniques (different 2D spectra, 1D 
and 2D spectra, planes of 3D and 4D spectra), magnifica- 
tion by real-time contour calculation, multiple windows, 
multiple cursors, and automatic spectral alignment in 
multiple overlay techniques if spectra with different spec- 
tral widths and calibrations are used simultaneously. 

Module 2: Local analysis 
Although it is theoretically possible to simultaneously 

recognize all multiplets and spin patterns in a set of mul- 
tidimensional spectra by fitting the data to a general 
model function characterized by a suitable number of 
parameters, in practice this approach is only possible for 
very simple systems, involving only a few variables. The 
more economic way is to try to quickly reach a level of 
abstraction and reduce the size of the input data to be 
handled by the computer. Since the publication of the 
first program for performing pattern recognition in 2D 
NMR spectra of polypeptides (Neidig et al., 1984), this 
general strategy has been used almost exclusively. In 
practical applications, the signal-to-noise and signal-to- 
artefact ratios are usually insufficient to unambiguously 
observe all theoretically expected cross peaks. Even after 
artefact reduction, spectra may still contain invalid signals 
that erroneously may be regarded as true peaks. Whether 
a program can handle missing and erroneous information 
and still yield nonambiguous solutions of a problem final- 
ly decides whether it is useful in practice. Even just allow- 
ing the human expert to interfere at a critical stage might 
be the best strategy. Module 2 covers applications ranging 
from simple peak picking to automatic multiplet analysis 
and volume calculations with the following iterative strat- 
egy. 

The most elementary objects AURELIA recognizes are 
local extrema (often simply called peaks), which are de- 
fined as data points having a greater absolute intensity 

than their closest neighbouring data points. In 2D, 3D 
and 4D spectra there are 8, 26 and 80 closest neighbours, 
respectively. For reducing the possible number of such 
simple peaks, usually a minimum threshold is required 
(Neidig et al., 1984; Glaser and Kalbitzer, 1987; Novic 
and Bodenhausen, 1988; Pf~indler and Bodenhausen, 
1988a; Stoven et al., 1989; Eccles et al., 1991). With the 
help of the program, a suitable threshold can be obtained 
by analysing a set of defined regions where no true sig- 
nals are expected. The simple peak picking results in a list 
of local peaks, which is fully accessible to the user and 
may be manipulated in detail. Peak lists from homonu- 
clear spectra of the TOCSY type can for example be 
symmetrized. This approach can be superior to the sym- 
metrization of the spectra itself, since now it may be 
limited to certain spectral areas and the degree of sym- 
metrization is controlled interactively. The allowed vari- 
ations of simple peak positions may always be chosen 
such that losing real signals is extremely unlikely. Areas 
that should be completely free of signals may be defined 
interactively. Depending on the type of spectrum, simple 
(singulet) peaks may or may not be sufficient for a fur- 
ther analysis. For example, in DQF spectra well-resolved 
multiplet patterns may be visible. Prior to any analysis of 
substructures of peaks, AURELIA first applies a direct, 
single-pass cluster technique to the list of peaks. In con- 
trast to statistical or hierarchical cluster techniques, this 
means that groups of signals may be directly found if 
suitable clustering parameters can be defined. This is 
possible in NMR spectra, since pairwise distances of 
simple peaks are directly related to J-coupling constants 
and relative intensity ratios are related to ratios of coup- 
lings and chemical shift differences (e.g., weakly and 
strongly coupled systems). In both cases, reasonable 
upper limits can readily be specified. If no substructures 
of peaks are expected, special clusters containing just one 
single simple peak are calculated. 

Only in ideal spectra with an optimum signal-to-noise 
ratio and nonoverlapping peaks, each cluster would corre- 
spond to just one multiplet and may be identified directly. 
In reality, this is almost never the case and clusters 
usually consist of groups of signals which may contain 
peaks from various multiplets or even partial multiplets, 
as well as various artefact peaks. A more sophisticated 
multiplet recognition procedure has therefore been imple- 
mented in AURELIA (Neidig et al., 1990; Kalbitzer et 
al., 1991b). First, arbitrary types of multiplets (currently 
containing up to 64 components) may be defined in a 
database. AURELIA reads and analyses the database 
entries and translates them into an internal description, 
containing representative features such as symmetry, 
shape, and sign distribution. For each multiplet these 
features are mapped to any cluster partitions that hold 
the same number of peaks as the multiplet (Neidig et al., 
1990). This mapping procedure is independent of transla- 
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tions, homogeneous scaling and homogeneous distortions. 
It results in a match factor that describes the similarity of 
a group of experimental simple peaks and a defined mul- 
tiplet. If the match factor exceeds a certain threshold 
value, the result is accepted. To overcome problems aris- 
ing from the technical upper limits of cluster sizes, the 
multiplet search algorithm is implemented in an iterative 
way. After each iteration, successfully determined mul- 
tiplets are removed from the list and the remaining peaks 
undergo the same procedure (starting with the cluster 
algorithm) again. This is repeated until a certain number 
of iterations has been performed or a certain amount of 
CPU time has been used. The results may be inspected by 
the user and verified, completed, annotated, fitted with 
Gaussian or Lorentzian functions to get J-couplings, or 
cross-checked with other spectra to any detail. Assuming 
that no procedure is perfect, AURELIA allows the inter- 
active deletion, redefinition and creation of multiplets. 
Figure 1 shows a dual display of two corresponding re- 
gions of a TOCSY and a NOESY spectrum, which have 
automatically been aligned to the same ppm values. All 
peak annotations that were entered in the TOCSY spec- 
trum have been transfered automatically to the NOESY 
spectrum and combined with proper annotations. 

The basis for macromolecular structure determination 
by NMR is the distance calculation from NOE data. The 
magnitude of the NOE is proportional to the volume of 
the NOESY cross peak or, in well-resolved spectra, the 
volume of the cross-peak multiplet. The simplest method 
for estimating the relative volumes of cross peaks is based 
on the determination of the peak amplitudes. As long as 
the widths and shapes of two peaks are identical, the 
volumes are proportional to the amplitudes; here, the 
amplitudes can be used for the calculation of relative 
volumes and distances derived from the volumes. Unfor- 
tunately, this condition usually is not fulfilled since the 
cross peaks in NOESY spectra often show inhomogen- 
eous broadening, which depends on the magnitude and 
number of J-couplings, and homogeneous broadening, 
which depends on the distribution and mobility of the 
nearby nuclei. Therefore, a reliable definition of peak 
areas and integration of such areas is needed. Most sim- 
ply, peak integration areas are defined as rectangles, 
circles or ellipses using the mouse. All data points of such 
areas may then be summed up to yield the volumes. This 
method turns out to be very cumbersome if many thou- 
sands of peaks have to be integrated, and can hardly be 
used in 3D or 4D spectra. Therefore, it has not been 
chosen in AURELIA. A number of  different methods, 
where the integration areas are determined automatically, 
are proposed in the literature (Denk et al., 1986; Stoven 
et al., 1989; Shen et al., 1990; Eccles et al., 1991). 
AURELIA uses an optimized version (Geyer, 1995; 
Geyer et al., 1995) of an iterative segmentation method 
combined with a region-growing algorithm (Glaser and 

Kalbitzer, 1987; Neidig and Kalbitzer, 1990). It recog- 
nizes all data points that are part of a given cross peak 
by analysing local intensity distributions. A parallel local 
analysis of neighbouring peaks allows the analysis of 
overlapping peaks, provided their maxima are still separ- 
ated. The segmentation may be fine-tuned by specifying 
suitable segmentation parameters, such as segmentation 
threshold, number of iterations and maximum expected 
integration areas. The volume is calculated as the sum of 
intensities of the segmented data points. This method 
works fully automatically and is very efficient. In 
AURELIA it is implemented for 2D, 3D and 4D spectra. 

Distances can be calculated from the volumes in 
NOESY or ROESY spectra using different approaches. 
If no dependence on the mixing time is available, they 
can be calculated according to the initial slope approxi- 
mation from the ratio of cross-peak volumes. The refer- 
ence cross peak and the functional dependency are 
defined by the user. Alternatively, AURELIA allows the 
calculation of distances from the cross-peak/diagonal- 
peak ratio (Esposito and Pastore, 1988). This requires 
knowledge of the correlation time of the participating 
nuclei. If applied to a pair of nuclei with a known dis- 
tance, this method may reversely be used to estimate the 
correlation time. If the dependence of  the NOE on the 
mixing time has been measured, these data can be fitted 
with three different approximations, i.e., the quadratic 
polynomial approximation (Macura and Ernst, 1980), the 
exponential approximation, and the biexponential ap- 
proximation. In the case of (noncornpensated) ROESY 
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Fig. 2. Calculation and plotting of ROESY buildup curves. Shown are 
biexponential fits of ROESY buildup curves of the neuropeptide head 
activator. The curves are lot sequential H~-H N ROEs of Pro 3 to  Gly 4 
(U1), Ser 6 to Lys 7 (O), Lys 7 to Val e (V), Val e to Ile 9 (A), Ile 9 to Leu t~ 
(O), and Leu 1~ to Phe H (B) (Saffrich, 1991). 
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Fig. 3. Backcalculated NOESY spectrum. The figure shows a display of a NOESY spectrum of HPr from S. carnosus (mixing time 100 ms), the 
backcalculated cross peaks, and the actual structure used for the calculation. 

spectra, the observed volumes are also dependent on the 
effective magnetic field experienced by the nuclei. There- 
fore, the strength and frequency of the B~ field relative to 
the observed resonances (assuming isolated spin pairs and 
predominantly dipolar relaxation) must be taken into 
account by calculating the offset correction (Bull, 1988). 
Figure 2 shows the ROESY buildup curves as calculated 
with AURELIA for some backbone protons of the neuro- 
peptide head activator (Saffrich, 1991). As soon as the 
cursor is navigated to a cross peak and a mouse button 
is clicked, the buildup curve to which this peak contrib- 
utes is shown. Any set of curves may be plotted on paper 
as well. 

Especially in NOESY-type spectra, the question often 
arises whether certain signals are true peaks or not. I f  no 
other rules apply, the human user decides intuitively: the 
stronger the signals are and the more they compare in 
shape to other already known true signals, the more likely 
they may be accepted and used as additional restraints in 

structure calculations. Apart from the fact that misinter- 
pretations occur, this task may be very cumbersome. 
Therefore, various methods for automated peak assess- 
ment have been proposed in the past (e.g., Glaser and 
Kalbitzer, 1987; Kleywegt et al., 1990). We have imple- 
mented a new Bayesian method that is based on a statisti- 
cal line shape analysis (but can be extended to any 
measurable quantity). It makes no special assumption 
about line shapes, although for an efficient discrimination 
the probability distributions for some of these features 
must differ for signals and noise. After a training phase, 
in which peaks of a noise and a signal area are analysed, 
a multivariate linear discriminant analysis is applied to 
obtain linear combinations of  line shape parameters that 
discriminate best between true signals and noise. The final 
Bayesian analysis allows the estimation of the probability 
for a given peak to belong to either the signal or the 
noise class (Antz et al., 1995). 

Frequently, the structure determination turns out to be 
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Fig. 4. Definition of spin patterns. Graphical display of  a valine spin pattern as found in a set of  COSY, RCT, and TOCSY spectra. 

Fig. 5. Automated sequential assignment. HN-H ~ connectivities are shown that were found in a set of  three spectra of  HPr from E .  f a e c a l i s .  TOCSY 
peaks: green; NOESY peaks: red; solid line: proposed sequential assignment, starting with the HN-H ~ peak of residue 34; broken line: connectivity 
found in a 3D NOESY-TOCSY spectrum. Spectral widths in the TOCSY and NOESY spectra are 14.08 ppm and the data sizes after Fourier 
transformation are 512• and 1024x2048 real data points. The spectral width in the three-dimensional spectrum is 11.23 ppm and the data 
size after Fourier transformation is 128 x 128 x 512 real data points. Note that differences in digital resolution of  the spectra lead to differences 
in the display of  the connectivities. 
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an iterative process. After most of the resonance lines 
have been assigned and sufficient volumes and distances 
have been obtained, one may try to calculate potential 
structures. Sometimes structures are created elsewhere, or 
structures of homologous proteins are available. In order 
to verify the consistency of a structure, even with NOESY 
peaks not yet assigned, the structure can be displayed 
simultaneously with the NMR spectra. Coordinate files of 
proteins and DNA/RNA stored in the PDB format may 
be loaded into AURELIA. Correlations between pairs of 
nuclei and peaks are obtained by combining peak lists, 
peak annotations and the coordinate files. Even better is 
a backcalculation from structure to NMR spectrum using 
a full relaxation matrix approach (Keepers and James, 
1984). The algorithm implemented in AURELIA can 
handle a number of different relaxation models, such as 
the Lipari-Szabo model (Lipari and Szabo, 1982a,b), and 
is optimized for minimal computing time (G6rler, 1995). 
For efficiency, it can be applied either to all or only to 
specific sets of  nuclei of the molecule. Figure 3 shows a 
part of a NOESY spectrum of the HPr protein together 
with the three-dimensional structure. To reveal differences 
between the experimental data and the backcalculated 
spectrum, the two spectra are shown in dual display. Such 
differences can arise from errors in the sequential assign- 
ments of the resonances or from a discrepancy between 
the calculated and the true structure; the comparison of 
the calculated and experimental spectra can help to cor- 
rect the possibly wrongly assigned resonances and to 
refine the three-dimensional structure. Many useful tools, 
such as creation of graphs of different kinds of NOEs 
versus the sequence and contact maps, are also available 
in this part of the program. 

Module 3: Nonlocal analysis 
The nonlocal data analysis comprises a large number 

of useful tools, such as comparing peak lists of different 
spectra, transferring peaks or annotations between spec- 
tra, importing external peak information, performing 
spectral algebra with 2D spectra or defining and compar- 
ing spectral patterns. Central goals are the search for spin 
systems and the sequential assignment. Following the 
ideas of the standard procedures, AURELIA provides a 
number of different routines for automatic or interactive 
spin pattern recognition. To be most flexible, the user 
may first describe homonuclear spin patterns in a data- 
base as a set of diagonal and cross peaks having a certain 
number of links. For each diagonal peak an expected 
range of possible resonance positions is given. These can 
for example be derived from the means and 5th and 95th 
percentiles of all published assignments (Gross and 
Kalbitzer, 1988; Wishart et al., 1995). The number of 
ambiguous solutions can be reduced when the same spin 
system is simultaneously searched in different types of 2D 
spectra. The user can interactively define the cross-peak 

patterns expected and the experimental spectra used for 
the search. Figure 4 shows as an example the three cross- 
peak patterns of the amino acid valine as they would be 
expected to occur in a DQE an RCT and a TOCSY 
spectrum. The automatic spin system search algorithm 
first translates the database entries into an internal repre- 
sentation. The translation involves a decomposition of 
any pattern into a set of subpatterns: (1) the primary 
branch, which is the largest set of diagonal peaks that are 
contiguously connected by cross peaks; (2) secondary 
branches, starting out from diagonal peaks of the primary 
branch; (3) a set of internal cross peaks, each connecting 
two diagonal peaks of the primary branch; and (4) the 
remaining cross peaks, which connect diagonal peaks of 
different branches. The algorithm (which is not error- 
tolerant) starts out Searching for the primary branch in a 
recursive procedure, using the lists of identified multiplets 
obtained in module 2. For any identified primary branch 
the secondary branches are searched for in the same way. 
The remaining cross peaks of patterns (3) and (4) can be 
identified by a simple look-up in the lists of multiplets. 
The check of peaks contained in other variations of a 
pattern is finally performed in a second pass. Cross peaks 
in symmetric positions are taken into account. Patterns 
are only accepted when the complete primary branch is 
found. A rich set of tools allows the user to verify, clean 
up and annotate the results. The spin system search may 
also be conducted interactively. In this case the user first 
navigates the cursor to a particular cross peak (e.g., an 
HN-H ~ cross peak in a protein spectrum), which is then 
used as the starting point of the search. Automatic se- 
quential assignments can be performed by combining the 
obtained patterns with NOE spectra. The spectra are 
overlaid, for example in the fingerprint region, and lists 
of NOE peaks and COSY/TOCSY peaks (or spin systems 
if available) are used to perform sequential walks. Fol- 
lowing a standard strategy in l~-sheet structures, the un- 
derlying algorithm starts from (HN,H ~) peaks in the 
TOCSY spectrum and searches for peaks in the NOESY 
spectrum having the same t~ 1 coordinate (giving a link to 
the t~-proton of the previous residue). If such a cross peak 
can be found, the algorithm switches back to the TOCSY 
spectrum and now searches for peaks having the same co 2 
coordinate, and so on. Similar strategies exist for other 
secondary structures. However, a main difficulty are am- 
biguities which arise in crowded regions of the three spec- 
tra. During the comparison of coordinates, the program 
may find more than one peak to follow the sequential 
walk. Whenever this occurs, the program stores all poss- 
ible solutions whose number increases exponentially. A 
number of different strategies have been published that 
try to solve this problem and to find the most reasonable 
solution (Englander and Wand, 1987; Billeter et al., 1988; 
Cieslar et al., 1988; Eads and Kuntz, 1989; Kleywegt et 
al., 1989,1990,1991; Van de Ven, 1990; Van de Ven et al., 



1990; Billeter, 1991; Eccles et al., 1991; Nelson et al., 
1991; Wand and Nelson, 1991; Craig and Kuntz, 1993; 
Wehrens et al., 1993; Hare and Prestegard, 1994; Olson 
and Markley, 1994). An alternative, which is used most 
often in practice, consists in the introduction of further 
information at critical stages. One such possibility has 
been implemented in AURELIA. The program is able to 
correlate different 3D peak lists, taken from homonuclear 
NOESY-TOCSY spectra, with the lists of NOE peaks 
and spin systems. The 3D peaks correlate three different 
nuclei, e.g., HN(i), Ha(i) and Hrq(i+l) or H~(i), HN(i) and 
Ha(i-I). The 3D peak coordinates can be projected into 
two dimensions and can be represented as vertical or 
horizontal lines that connect NOESY and TOCSY peaks 
in the 2D spectra (Fig. 5). Since the overlap problem in 
three dimensions is less severe than in two dimensions, 
most of the ambiguous sequential pathways can be elim- 
inated interactively by inspection of the data. 

Module 4: Display and evaluation of 3D NMR spectra 
The concepts of an image analysis applied to 2D NMR 

spectra as described so far apply for 3D and 4D spectra 
as well. In addition, more advanced display tools are now 
needed to allow a visual inspection of the data and the 
information derived from it. Furthermore, a data analysis 
is typically not only based on 3D or 4D spectra, but on 
the combination of 2D, 3D and 4D spectra. Therefore, 
more effort has been put into techniques that correlate 
NMR sPectra of different dimensions. 

For a general assessment of the basic quality of the 3D 
spectra, the localization of global artefacts and the first 
steps of a data analysis, it is important to be able to 
create a 3D view of the data set. AURELIA provides the 
necessary routines for the calculation, display, rotation, 
projection and zooming of 3D objects. Depending on the 
spectrum size, these routines may work on compressed 
data in order to achieve a satisfactory real-time perform- 
ance. Moving 2D slices through a 3D dataset is a typical 
tool that requires real-time calculations (Fig. 6). Access- 
ing orthogonal 2D planes, diagonal planes and projec- 
tions can also be achieved by reading the proper data 
from disk. In this case no data compression is applied. 
The sub-cube organization of the 3D spectra on disk 
(Vuister et al., 1990) and an internal AURELIA cache 
mechanism allow an almost interactive walking through 
any dimension of the 3D data set. 

In 3D spectra, the image enhancement preceding the 
data evaluation is even more important than in 2D spec- 
tra. For example, t t noise ridges in 2D spectra may now 
appear as bundles of tt noise planes, which could over- 
load 3D peak lists. AURELIA provides a generalization 
of the mean row subtraction procedure described in mod- 
ule 1. It is called mean-plane subtraction and works quite 
similarly. The user defines a so-called mean plane area, 
i.e., a part of the 3D spectrum where no real peaks are 
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expected. Different types of projections or mean planes 
may then be calculated from this area and the resulting 
2D plane is subtracted from the complete 3D spectrum 
(Fig. 7). The base line correction procedures described for 
2D spectra (Saffrich et al., 1993) are also available for 3D 
spectra. Any combination of dimensions, or just the full 
spectrum, may be base-line corrected using a set of base 
line points that have for example been defined in corre- 
sponding 1D spectra. The 3D analysis, starting from 
simple 3D peak picking and ending with 3D peak annota- 
tion and 3D volume calculation, is implemented similar 
to the 2D case as described above. Simple peaks are de- 
fined as data points having a greater intensity than the 
closest 26 neighbours. Lists of such peaks may be inter- 
actively manipulated, based on proper displays. Since in 
common 3D applications multiplet splittings are usually 
suppressed by decoupling and cancelled by the low digital 
resolution, the cluster and multiplet analyses have only 
been implemented implicitly, assuming that the signals 
can be described as 3D singlets. Annotating 3D peaks is 
usually done by accessing 2D planes. The volume deter- 
mination is done by an optimized iterative segmentation 
procedure (Geyer et al., 1995). Like in the case of two 
dimensions, it is completely automated, independent of 
the peak shape, accurate and fast. 

While the tools described above are independent of the 
type of 3D spectrum, it has been found useful to imple- 
ment specialized strategies that are applicable to different 
types of 3D spectra. In all cases a parallel usage of 2D 
spectra is possible. We want to describe two typical ex- 
amples, the tracing of J-coupling networks via sets of 
triple resonance experiments and the application of 'strip' 
techniques (see, e.g., Kjaer et al., 1991) applied to 3D 
NOESY-HSQC spectra. Up to eight different 2D and 3D 
spectra may be correlated to yield sequential assignments. 
The 2D spectrum used could, for example, be a (15N,~H)- 
correlated spectrum and the 3D set could consist of spec- 
tra such as HNCA, HNCO and HN(CO)CA (Kay et al., 
1990; Bax and Ikura, 1991). Picking correlated planes, 
multi-cursors and tracing orthogonal slices are the inter- 
active tools to do this job. We have also implemented an 
automatic technique that is applicable to polypeptides. As 
found in some other published procedures (e.g., Olson 
and Markley, 1994), the central idea of our procedure is 
first to find suitable pairs of HNCA peaks representing 
correlations of NH(i) peaks to C~(i) and C~(i-1) peaks. 
Pairs of such peaks having one of the C ~ frequencies 
correspond to neighbouring residues in the primary 
sequence. Since degeneracies either lead to collapsed pairs 
or to ambiguous NH or C ~ frequencies, it is almost im- 
possible in practice to find unique sets of peaks corre- 
sponding to a group of sequential residues. The ambi- 
guities may be reduced, but not fully overcome, by incor- 
porating additional spectra, especially two-dimensional 
(JSN, JH)-correlated and three-dimensional HN(CO)CA 
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Fig, 6. Display of  3D N M R  data. The figure shows a NOESY-TOCSY spectrum of  HPr protein from E. faecalis, The data size before and after 
Fourier transformation was 128 x 128 × 512 points (as in Figs. 5 and 7); a sine multiplication was applied. The planes shown are indicated in the 
three-dimensional representation of  the data 

~ a .  " 6 '  

t ~  ~t ~' ~ I 

t~ 

Fig, 7, Mean-plane subtraction of  3D data, used for noise suppression in a NOESY-TOCSY spectrum of  HPr protein from E faecalis. Left: 
spectrum before correction; right: spectrum after subtraction of  an (o)2, o)3) mean plane, Data are plotted at the same contour levels, 
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Fig. 8. Strip editor, used to sort a pool of strips. Sequential NOEs are shown in a NOESY-HSQC-spectrum of ~SN-enriched HPr protein from 
S. carnosus .  The data size before Fourier transformation was 256 x 112 • 1024 points, with spectral widths of 14.08 ppm, 40.00 ppm, and 14.08 
ppm, respectively. A cosine multiplication was applied in the t~ direction and exponential multiplications in the t 2 and t3 directions. The data size 
after Fourier transformation was 256 x 128 x 1024 points. 

and C B C A ( C O ) N H  spectra (Grzesiek and Bax, 1992). 
However, if such spectra have been obtained under differ- 
ent experimental  conditions, this may lead to additional 
problems such as differences of  resonance frequencies in 
the spectra. One o f  these factors is represented by differ- 
ences in digital resolution from spectrum to spectrum and 
from dimension to dimension. This problem can partly be 
solved by allowing different deviations of  the chemical 
shifts, depending on whether peaks in a spectrum or 
peaks of  different spectra are compared.  For cases where 
this is not  sufficient for unique solutions, another  strategy 
has been implemented as the second par t  o f  the sequential 
assignment procedure, based on some fixed, predefined 
information and on the pr imary sequence of  the polypep- 
tide. The user may load a set of  already assigned reson- 
ances, such as the N, H ~ and C ~ resonances of  the resi- 
dues Gly, Ala, Thr  and Ser. These assignments do not 
need to be sequence specific, i.e., it is not necessary to 

know which C a belongs to which glycine. Typical sources 
to obtain such information are HCCH-TOCSY,  H C A C O  
and 2D correlated experiments. I f  a possible sequence of  
H N C A  pairs is generated during the analysis, it first gets 
cross-checked with the preloaded resonances. I f  some of  
them are identified, a hypothetical piece of  sequence is 
generated like Xxx Xxx Gly Xxx Xxx Xxx Ala Xxx Xxx 
Xxx Xxx Xxx Gly Xxx, where Xxx represents the uniden- 
tified spin systems. This pattern is now matched to the 
pr imary sequence of  the polypeptide. I f  a match is ob- 
tained, i.e., in the above example if the pr imary sequence 
contains a set of  residues with Gly at position i, Ala at 
(i+4) and another  Gly at (i+10), then the result is assigned 
a high score value, otherwise it is assigned a low score 
value. The exact values are derived from the length of  the 
pattern and the number  of  fixed residues contained in the 
pattern. The results are sorted by their score values. The 
limitations of  this strategy are that (1) patterns must be 
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sufficiently long; (2) enough fixed resonances must be 
available; and (3) the fixed residues must be distributed 
suitably over the full sequence. 

Strips are small portions of 2D planes derived from 3D 
spectra. For example, a strip in a NOESY-HSQC spec- 
trum might be taken at a certain proton frequency in a 
nitrogen plane. The width of the strip usually is small, 
e.g., 20 data points, whereas the height is the full height 
of the plane. Strips may also have a depth. A depth of 1 
means that a strip is taken from just one plane. Since 3D 
peaks extend in all dimensions and since strips should 
contain the best representations of such peaks, one may 
decide to sum up a few (= depth) planes before taking the 
strips. Representing 3D spectra as a set of strips elimin- 
ates empty spaces in 3D spectra. We have implemented 
interactive and automated tools to define such strips. All 
defined strips are collected in a pool. A strip editor may 
then be used to sort them into any order (Fig. 8). The 
sorting is done by comparing positions of peaks of differ- 
ent strips. Again, the program can do most of the job 
automatically. For example, reading out strips can be 
done on the basis of suitable 2D peak lists or on the basis 
of 3D peak lists. The user may specify additional criteria, 
like reading strips at the strongest peaks or reading only 
strips that contain a minimum number of  peaks. Families 
of  strips coming from different 2D and 3D spectra may 
be identified, stored and accessed as a group. 

Module 5: Display and evaluation o f  4D N M R  spectra 

Most recently, the 4D module of AURELIA has been 
added. It offers all tools to analyze 4D spectra. Most 
simply, the user may read 2D planes and display and plot 
them. Six different types of such planes are of import- 
ance. Apart from the type, two fixed frequencies along 
the two other perpendicular directions must be specified. 
This makes a visualisation of all planes very tedious. To 
check in advance which planes should be visualised at all, 
one may first look at one of the 12 types of 2D projec- 
tions. Accessing any 2D plane is very fast; in a 128 MB 
4D spectrum it takes typically less than a second. The 
calculation of projections requires scanning through larger 
portions of the data set and typically needs a few seconds. 
It turns out that the larger the dimensionality of a spec- 
trum, the more important it becomes that the program 
assists the analysis. In this sense, the 4D peak picking is 
mandatory. We have implemented it such that data points 
having intensities greater than their closest 80 neighbours 
are taken as 4D singlets. 4D peak lists can be sorted, 
cleaned, annotated and printed. The 4D volume calcula- 
tion again applies the iterative segmentation procedure 
already mentioned in the 2D and 3D cases. 

Conclusions and Outlook 

Computer-aided evaluation of multidimensional NMR 

data will continue to grow in importance. It is clear that 
this approach is superior to a data analysis performed 
exclusively by hand, especially if 3D and 4D spectra are 
involved. A fully automated data analysis for small mol- 
ecules can be expected in the foreseeable future. To our 
knowledge, the currently existing programs that support 
an automated data analysis, including AURELIA, need 
some aid from the human expert and the results are not 
free of ambiguities and need manual checking. Therefore, 
the strategy of AURELIA is to use the possibilities of the 
computer and the human expertise combined and most 
efficiently. The fact that AURELIA has been developed 
on the basis of the ideas of the general image analysis, 
rather than providing limited solutions for specific cases 
of the data analysis, has been found to be very important. 
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